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J .  Phys.: Condens. Matter 3 (1991) 8665-8682. Printed in the UK 

Band structures of non-collinear magnets in y-Mn and y-Fe 

D J Crockfordt, D hf Bird and M W Long 
School of Physics, University of Bath, Bath BA2 7AY. UK 

Received 22 April 1991 

Abstract. Local spin density functional theory is applied within the linearized 
muffin-tin orbital atomicsphere approximation (LMTO ASA) method to calculate the 
electronic structure of non-collinear antifemornagnets in FCC manganese and iron. 
Direct application of the theory leads to a Hamiltonian which is doubly degener- 
ate for every band at every k-point. An irreducible representation is found which 
~ v e r c o m e  this problem. The total energies of single, double and triple spin density 
wave stmct- are found to be essentially indistinguishable within the limits of the 
calculation. 

1. Introduction 

The magnetic properties of iron and manganese in the FCC structure (i.e. y-Fe and 
y-Mn) have received considerable attention since it was found that ^(-Fe could be 
stabilized by precipitation in a copper matrix (Abraham e t  aI 1962) and y-Mn by 
alloying with small amounts of other transition metals (Bacon et al  1957, Endoh 
and Jihikawa 1971, Honda el  a1 1976). Experimentally, they are found to be type 
I antiferromagnets but the detail of their magnetic structure has proved difficult to 
determine and has been a subject of some debate (Tsunoda e l  al  1987, Jo and Hirai 
1986, Long el al 1987). The key feature of all these systems is that the FCC lattice 
is frustrated, i.e. it is impossible to arrange for every atomic spin to have nearest 
neighbours of the opposite spin only. As a consequence, it is believed that in some of 
these phases the magnetism may be non-collinear, so there is no unique quantization 
axis for the spins. 

The Heisenberg model in its classical limit can be used to show how non-collinear 
'structures may arise as ground states in frustrated topologies. Applied to the FCC lat- 
tice one obtains a family of degenerate solutions (Kouvel and Kasper 1962, Long 1989) 
which may include up to three independent spin density waves of equal amplitude. 
Adopting the notation of Long and Yeung (1986) we shall consider three particular 
cases of the multiple spin density wave or MSDW (figure l ) ,  where the FCC structure is 
treated as a simple cubic lattice with a four point basis. It can be seen that the single 
spin density wave (SSDW) is just the collinear antiferromagnet and is characterized by 
a single wavevector Q in direction [OOl]. The double spin density wave (DSDW) has 
Qs in the [IOO] and [OIO] directions, while the triple spin density wave (TSDW) has 
Qs along all three crystal axes. In figure 1 it is assumed that the spin vector S(Q) 
associated with each Q is parallel to Q ,  as observed in experiment (Long et  ai 1987). 

t Present address: Department ofphysics, Queen Mary and Westfield College, London, El 4NS, UK. 
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Figure 1. Spin arrangements in an octant of the Fcc lattice for the (a )  SSDW, (6)  
DSWD and ( c )  TSDW antifemmagnets. 

TSDW 

However, in the absence of spin-orbit coupling there is no interaction which ties the 
spin direction to the lattice and so any relation between S and Q would be equivalent. 

Much work has been done on the electronic structure of the collinear SSDW in y-Fe 
and y-Mn (Cade 1980 and 1981a, Wang e l  al  1985, Pinski et al  1986, Moruzzi et ol 
1989). Here we present LMTO ASA (Andersen 1975) band structure calculations on 
the MSDW structures of figure 1. The aim is to investigate the degree to which the 
classical degeneracy between different MSDW states is lifted in an itinerant electron 
calculation. This could have interesting implications for understanding the magnetism 
of y-Fe and 7-Mn, in particular the alternating SSDW and DSDW domains which have 
been proposed by Tsunoda et al  (1987) for the structure of 7-Fe. 

The basic theory for the treatment of non-collinear systems in the local density 
approximation was developed by von Barth and Hedin (19i2). This was first systemat- 
ically applied by Kiibler c l  a1 (1988) (see also Sticht et al  1989) who used the linearized 
augmented spherical wave atomic sphere approximation (LASW ASA) (Williams et al 
1979) to  perform self-consistent calculations on a number of non-collinear systems, 
including y-Mn2Fe2. The theory may be similarly applied to linearized muffin-tin or- 
bital atomic sphere approximation (LMTO ASA) calculations. For antiferromagnets it 
is also desirable to  take into account the spin/sublattice symmetry associated with the 
magnetism. For the collinear SSDW this symmetry is clear: translate the up sublattice 
(say) onto the down sublattice, reverse all spin directions, and the system is invariant. 
The symmetry means that the Hamiltonian is reducible, and if not reduced all bands 
are doubly degenerate at  every L-point. At the very least this can lead to a waste of 
computer time, as the time required to diagonalize a matrix varies as the cube of the 
dimension, so an unnecessary factor of two leads to an eight-fold increase in time. At 
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worse, the degeneracies may be artificially split due to computational rounding errors, 
leading to incorrect ground states. The way around this problem for a simple anti- 
ferromagnet is well known: indude only up spin electrons (say) in the band structure 
part of the calculation and use the symmetry of the structure to put the down spin 
electron densities into the atomic part. For a non-collinear antiferromagnet, however, 
the solution is not so clear. The general form of the antiferromagnetic symmetry for 
a MSDW has already been given (Long and Yeung, 1986) and it is to the problem of 
the reduction of the MSDW Hamiltonian that we address ourselves in this article. 

In the next section the theory of LMTO ASA for the non-collinear spin configura- 
tions of y-Mn and y-Fe will be developed and the degeneracy of the bands will be 
demonstrated. The representation obtained is initially in terms of 72 x 72 matrices, 
but it will be shown that this can be replaced by an equivalent representation involv- 
ing 36 x 36 matrices only. In section 3 the implementation of the scheme in a standard 
LMTO ASA program will be described and in section 4 we present and discuss the 
results of self-consistent band structure calculations for the SSDW, DSDW and TSDW 
phases. The article is concluded in section 5. Our calculations m u m e  that in each of 
the MSDW phases the crystal retains its cubic lattice parameters. We therefore ignore 
the small tetragonal distortion which accompanies the symmetry-breaking SSDW and 
DSDW structures. The theory of section 2 can be extended to the calculation of the 
axial pressure (Cade 1981b) in these phases, which enables us to discuss the origin of 
the tetragonal distortion. This will be the subject of a forthcoming article (Crockford 
et  a1 1991). 

2. The Hamiltonian for MSDW systems 

Implicit in the spin density functional formalism is the choice of a set of common 
axes to which all spins in the problem are referred. For a ferromagnet or a collinear 
antiferromagnet (SSDW) all spins are either parallel or antiparallel to asingle axis. The 
operators used to build the Hamiltonian can be chosen to be diagonal in spin space 
and the theory yields a pair of single particle equations, one for each spin direction. 
For non-collinear systems the problem is more complicated as there is no unique choice 
for the spin axes. To solve the problem exactly it would be necessary to have local spin 
axes for each volume element considered. The adoption of the ASA allows the local 
spin axes to be defined at the scale of the atomic spheres and renders the problem 
tractable. 

It is characteristic of LMTO ASA that there is a separation of the potential and 
crystal structure dependence of the band structure problem through the potential pa- 
rameters and structure constants respectively (Andersen et  a1 1985). As the structure 
constants embody the spatial relationships in the crystal it is convenient to define 
them to be independent of spin: the spin dependence then resides solely in the po- 
tential parameters. We define the potential parameters in terms of direct products 
of the paramagnetic (1, m and atomic species dependent) potential parameters and 
Pauli matrices. To represent non-collinear structures we shall require the full set of 
Pauli matrices, in contrast to the collinear case, where only the diagonal matrices are 
needed. As aresult, the Hamiltonian for non-collinear systems will be non-diagonal in 
spin space and cannot be simply separated to yield an independent equation for each 
spin. 

We shall represent the FCC structure of undistorted y-Mn or Fe as a simple cubic 
lattice with a four point basis labelled as in figure 1. This is a convenient choice for 



8668 

the MSDW, which can be regarded as four simple cubic sublattices, each composed 
of atoms with parallel spin directions. The SSDW can be described as a crystal with 
two atoms per unit cell, but in order to make comparisons between the states easier 
we use the same cell for all three structures. In the elemental metals all atomic 
species are identical and occupy equivalent positions in the crystaI, and hence the 
potential parameters P relative to any local spin axis must be the same, independent 
of sublattice. Defining P' with respect to a set of common axes, which we choose 
to be the crystal axes, the sublattice components of P' and P can differ only by a 
unitary transformation in spin space. For a given atom this will correspond to the 
rotation necessary to make the local axes coincide with the crystal axes, and this is 
a function of sublattice only. We can therefore determine P' by calculating P and 
making use of the symmetry of the spin directions in sublattice space. When this is 
done (appendix A) we obtain 

D J Crockfoni et a1 

P' = npo + m d .  p (1) 

where d is the spin direction on sublattice 0, j3 = (&,&&) and the pi are 8 x 8 
matrices in spin/sublattice space, as defined by (A3). Note that we ignoring the Im 
indices of the potential parameters here, as they are not relevant to the spin/sublattice 
representation. As indicated in appendix A the expectations of pl, pz and p3 are the 
respective spin wave amplitudes in the global I, y and z directions. The form of P' is 
comparable to that of the 'potential matrix' weff of the LASW method (Kiibler et a1 
1988). 

The LMTO structure Constants, which are independent of spin, can be represented 
in the 8 x 8 spin/sublattice space by the direct product of sublattice dependent ma- 
trices and U,, (the identity). Together with the potential parameters these quantities 
determine the LMTO Hamiltonian fi. The treatment so far is parallel to that of 
Kiibler et  al  (1988) for the LASW method. What we now do is to demonstrate that 
this Hamiltonian gives degenerate bands, regardless of k, and that it can be replaced 
by an equivalent Hamiltonian involving only 4 x 4 matrices. To do this it is first 
necessary to define new structure constants S' with a sublattice dependence given by 
(appendix B) 

i R 

Here aj is one of the set of four 4 x 4 matrices defined in (B4), j E {0,1,2,3}, and 
p and p' are sublattice indices. The vectors cj are sublattice vectors for the FCC 
structure, as given in (B2). It is clear from (2) that the sublattice (pp') dependence 
of S' is embodied entirely in the set of 01 matrices. This definition differs from the 
standard definition for structure constants (Andersen et al 1985) only in the absence 
of a sublattice dependent phase factor, and can be shown to yield identical physical 
results (appendix E). 

I t  can be shown that the LMTO ASA Hamiltonian H can be expressed as a power 
series in quantities involving only the structure constants and potential parameters 
(Andersen el a1 1985). It follows from (1) and (2) that the Hamiltonian for a MSDW 
structure can be written as a power series in the matrices pi and aiu,,. The algebra 
of these matrices is presented in appendix C but the significant features are that 
the sets { p i }  and {ajuo} are respectively closed under matrix multiplication, and 
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that there exist simple commutation relationships between members of the two sets. 
Hence the spin/sublattice dependence of the Hamiltonian can always be expressed as 
a linear combination of products of the form ajuo . Pr (appendix C). It is then easy 
to show that the three matrices ajuj, j E {1,2,3} commute with the Hamiltonian 
but not with each other, and it follows by a standard theorem (Schiff 1968) that 
the eigenvalues must be degenerate. It is interesting to note that the matrices ajuj 
are just the transformation matrices which describe the symmetries of the MSDW 
antiferromagnets (Long and Yeung 1986). It can he seen in figure 1 that the system is 
invariant if the lattice is translated by sublattice vector c, (equivalent to operating on 
the Hamiltonian with a,) and the spins are rotated by a about the axis perpendicular 
to the plane of cj (equivalent to ai). 

The fact that the Hamiltonian as it stands gives degenerate eigenvalues regardless 
of k-point indicates that the representation in terms of 8 x 8 matrices in spin/sublattice 
space is reducible. There are two approaches to finding an equivalent representation in 
terms of smaller matrices: either find a transformation that converts the Hamiltonian 
into a block diagonal form with equivalent blocks, or search for sets of smaller matrices 
with the same algebra as ajuo and pi. The former approach, along with the general 
problem of the reduction of a system with AF symmetry, will be the subject of a future 
article (Bird et a /  1991). In appendix C we present two sets of 4 x 4 matrices which 
correspond to the ajuo and pi sets, and have the same algebra. The first of these 
sets consists simply of the matrices aj, without the direct product with uo, and the 
matrices of the second set we have labelled (see (C3)). The fact that the algebra of 
these matrices is the same as that of the 8 x 8 sets means that they form an equally 
valid representation for the MSDW Hamiltonian and can be substituted directly for 
their 8 x 8 counterparts in (1) and (2). 

3. Impfementation 

A standard LMTO ASA program was adapted to use the spin/sublattice representa- 
tion described previously. This involved the multiplication of the standard structure 
constants by the phase factor necessary to obtain (2), and the inclusion of code to 
calculate the P‘ defined by (l), with substituted for pi, given the standard potential 
parameters as input. After the diagonalization of H the ‘angular momentum weights’ 
(Skriver 1984) were calculated as 

Here the index i E {O, 1 ,2 ,3}  and the corresponding weights, when integrated over 
the Brillouin zone, give, respectively, the total charge and the ( 2 ,  y, z )  spin wave 
amplitudes for the unit cell. This follows from the properties of the original 8 x 8 
matrices (appendix A) and the fact that the 4 x 4 matrices have the same algebra. 
From these the up and down spin densities in the spheres are easily calculated. It 
should be emphasized that urm(k) is a vector in spin/sublattice space, so each term 
in (3) is a contraction of two vectors with matrix P:!. It should also be noted that 
the spin wave amplitudes produced this way must be appropriate to the MSDW being 
considered. For example, in a DSDW the integral of (3) must yield equal values for 
i = 1 and i = 2, and zero for i = 3. This gives a good test of the correctness of an 
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implementation. In addition, the point group symmetries of the three MSDWs are not 
the same: the SSDW and DSDW are tetragonal whereas the TSDW is cubic. In practice 
all calculations were done using the irreducible wedge for a primitive orthorhombic 
lattice. This is the smallest zone which, for all three MSDWs, gives correct integrals 
of (3) without the need for careful consideration of the spin/space symmetries (Long 
and Yeung 1987). 

The atomic charge part of the LMTO code was not changed from the original. In 
the atomic part of the self-consistency cycle the representation is the local (diagonal) 
one for the atomic sphere: the non-collinearity of the structure is dealt with entirely 
in the band structure part of the program. 

D J Crockford el a1 

4. Results and discussion 

Self-consistent calculations were performed on y M n  with S, = 2.73 au and on y-Fe 
with S,, = 2.555 au. The Mn radius was chosen for consistency with the magnetic 
moment obtained by Cade (1980); the Fe radius was that which gave zero pressure in 
the paramagnetic material. The pressure of paramagnetic Mn at 2.73 au is strongly 
negative (-0.3 Mbar) and at a radius that yields zero pressure the system does not go 
magnetic, so the manganese calculations could not be done at equilibrium volume. The 
Brillouin zone integrations were performed using the tetrahedron method (Jepsen and 
Andersen 1971) in an irreducible wedge of the primitive orthorhombic zone, with 64 
k-points in the wedge. The convergence of the MSDW states w a s  particularly slow, the 
results presented being the product of a t  least three hundred band structure iterations 
for each case. Numerical results are converged to the last digit. 

The values obtained for the magnetization and total energy of the three MSDW 
systems in Mn and Fe are given in tables 1 and 2 .  Experimentally the moment obtained 
for the SSDW structure in Mn has been been determined to be in the region 2 p, (Smith 
and Vance 1969) to 2.4 pB (Bacon ef a1 1957). The moment of what was  believed 
to be the the SSDW in Fe was given as 0.72 pB (Abrahams ef  a1 1962). Our results 
for the SSDWs are in reasonable agreement with those of Moruzzi et al  (1989), who 
show that the calculated moment is a very sensitive function of the lattice parameter. 
The most significant feature of our results is that the total energy differences between 
the different phases are very small, and are essentially zero within the accuracy of 
the calculations. This is consistent with the results of the classical Heisenberg model, 
where the phases are all degenerate, and suggests that non-collinear magnetism will 
naturally arise in these systems. 

Table 1. Magnetization and total energy for Mn systems. 

SSDW DSDW TSDW 

Iclagnetimtbn/atom/pB 1.903 1.866 1.827 
Total energy/Ryd -126.126 -126.126 -126.125 

The band structures for Mn in the paramagnetic and MSDW phases are given in 
figure 2, and those for Fe in figure 3. The Brillouin zone used is the small cubic one 
corresponding to a cubic lattice with a four point basis (figure 1). This zone is the 
most appropriate for the TSDW: the other structures have larger zones and the bands 
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Table 2. Magnetization and total energy for Fe system. 

8671 

SSDW DSDW TSDW 

MagnetizationJatomJpB 0.711 0.748 0.732 
Total energyJRyd - 178.236 - 178.238 - 178.237 

r 0 a 
Y z Y 

X I B - 1  X 1 E - l  
5 5 
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3 3 

2 2 
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.I - 1  

-2 -2 

-3 -3 

-t - I  
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-6 -6 
x r  M R  r 

x r  M R  r 
Figure 2. Band structures for FCC Mn: (a)  paramagnetic; (a )  SSDw; ( c )  DSDW; 
and ( d )  TSDW. 

fold back onto this zone. The symmetry labels used are those of Bradley and Cracknell 
(1972) and the path is that used by Kiibler et al (1988) in their work on y-Mn,Fe2. 
Plots were also made of the band structures of the SSDW and TSDW in Mn for the 
zones and paths used by Cade (1980, 1981a), and were found to be in good agreement. 
In all band structures the Fermi level is shifted to zero. 
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Figure 3. As figure 2, but for FCC Fe 

It is apparent that the paramagnetic band structures of Mn and Fe are very similar, 
the Fermi level in Fe being about 0.1 Ryd higher than in Mn, taken relative to the 
common features. This is only to be expected, given that Fe has one more electron than 
bin. The MSDW band structures for a given material are also very similar. Comparing 
the magnetic structures with the paramagnetic ones it can be seen that the chief effect 
of the magnetism is to split bands that were degenerate in the paramagnetic case. For 
example, at the r-point of the SSDW in Mn the parabolic bands between -0.2 and -0.3 
Ryd have been split, a band has been forced up from the concave/convex pair that 
meet just above -0.1 Ryd, and the pair above that have been split apart altogether. 
In addition, looking around -0.3 and 0.2 Ryd, between Rand  r, it is clear that bands 
that were at least triply degenerate in the paramagnetic material are running almost 
parallel. It is the magnitude of the splitting that really distinguishes Mn from Fe. For 
the SSDW, for example, this can be estimated from the band marked 1 in the figures, 
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which is split by 0.04 Ryd in Mn and 0.006 Ryd in Fe, and it seems that the splitting 
in hfn is generally an order of magnitude greater than in the corresponding Fe phase. 

U c 
c 

ENERGI (RYOBERGS) 

ENERGY (RIDBERGS ) 

Figure 4. Majority (lower plots) and minority (upperplots) densities of states for 
6,  p and d projections h FCC Mn: (a )  SSDW; (b )  DSDW; (c)  TSDW and FCC Fe; (d)  
SSDW. 

The densities of states for the MSDWs in Mn, projected onto angular momentum 
and spin, are given in figure 4. Again, the Fermi level is set to zero. It is evident that 
the s and p densities of states are very small and do not distinguish between MSDW 
structures. However, even in the d densities of states, where one might expect the 
magnetic effects to be strongest, the different MSDWs can be distinguished only by 
the relative magnitudes of the small spikes within an overall peak area. The plots for 
the MSDWs in Fe show similar features and that for the SSDW is given in figure 4(d). 
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Energy integrals of the d-magnetization density (majority density of states minus 
minority) show that the magnetism is built up evenly throughout the band. The 
position of the Fermi level is slightly more favourable to the moment in Mn than in 
Fe: in Fe it occurs just after the peak in magnetization. 

More interesting than the behaviour of the total d density of states is that of its 
projections onto azimuthal angular momentum m. The magnetizations carried by 
the various orbitals, in cubic harmonic form, are given in tables 3 and 4 ,  and the 
magnetization densities in figures 5 and 6. The y r  and zz orbitals are equivalent in 
all the structures owing to the symmetry under reflection in z = y. It can be seen 
from the tables that the two projections that carry most of the moment are 3r2 - r2 
and zz - 9. In addition, these projections exchange first and second position on 
going from the SSDW to the DSDW. A similar exchange occurs with the zy and the 
yz/zz projections. In the TSDWs the projections within the eK (3r2 - r2 and zz - yz) 
and t,, (zy, yr, LZ) groups respectively carry the same magnetic moment. Similar 
behaviour is shown in the graphs of the magnetization density: the 32’ - r2 and 
zz-yz graphs do to some extent swap over on going from the SSDW to the DSDW, and 
similarly the zy and yz/zr graphs. It should be noted that for the DSDW there is a 
general loss of distinction between graphs within a symmetry group (eg or tz,). This 
is an intermediate step on the way to the TSDW, where the graphs within a group are 
identical. 

D J Cmckjord et  4l  

Table 3. m-projectedmagnetivition for M n  systems (in w ~ ) .  

Orbital SSDW DSDW TSDW 

3 2  - Y* 0.419 0.456 0.433 
22 -2 0.499 0.430 0.433 
XY 0.217 0.348 0300 
y x =  zz 0.354 0.286 0.300 
Total d 1.842 1.804 1.768 

Table 4. m-pmjectedmagnetization for Fe systems (in pe) .  

Orbital SSDW DSDW TSDW 

32’ -7’ 0.136 0.217 0.190 
2 - yz 0.229 0.168 0.190 
CY 0.049 0.141 0.109 

Totald 0.686 0.721 0.706 
Y L  = IS 0.136 0.098 0.109 

The behaviour of the eg orbitals can be understood by consideration of their hop- 
ping in and out of the zy plane. The z2 - yz orbitals have a large overlap in the zy 
plane, while the 3rZ - r2 orbitals ‘point’ out of the plane. For the SSDW this implies 
that hopping between z2 - 9 orbitals is to some extent blocked by Pauli exclusion. 
The z2 - y2 orbital is therefore more localized than the others and it carries a larger 
moment. For the DSDW, however, zz - yz hopping in the zy plane is between opposite 
spins and the orbital can delocalize. In this case the out of plane hopping of the 
3r2 - r2 orbital is less favourable than for the SSDW, and so the roles of the zz - y2 
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(4  

SSDW 

TSDW 

ENER6T (RYOBERGS) 

X I @ - '  

ENERGI lRIDBERGS> 

Figure 5. d mapetimtion densities projected onto 3 2  -I*, zz - yz , zy and yz = zz 
orbitalsfor FCC Mn: ( a )  SSDW; ( b )  DSDW; and (c )  TSDW. 

and 3 2  - r2 orbitals are swapped. We would not want to push this localized orbital 
picture too far, however, in the interpretation of the results of an itinerant electron 
calculation. 

5. Conclusion 

Two main points come out of this work. The first is a technical issue, concerned with 
the reducibility of the most direct representation of the Hamiltonian of the MSDW 
structures. We have shown how an irreducible representation can be constructed and 
in another article we discuss how this can be done for any antiferromagnetic structure 
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SSDW I 
Y= 

DSDW 

ENERGY (RYDBERGS) 

ENERGY (RIDBERGS , 
Figure 6. As in lip 5 ,  but for FCC Fe 

(Bird el a1 1991). The second is that our caIcuIations show only small differences in 
the band structures, density of states, magnetizations and total energies between the 
different MSDW phases. This implies that itinerant electron effects do not significantly 
lift the degeneracy found between these phases in the classical Heisenberg model. 
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Appendix A 

To obtain the specific form of the potential parameters consider an atom op arbitrary 
sublattice 0 with total spin in the direction of the Cartesian unit vector d. Defining 
the local spin axis to be in direction d the potential parameter P takes the form, 

p =  ('7 POI) 

Here P t and P 1 are the values yielded for P by the spin-up and spin-down charge 
densities respectively in the atomic sphere. Given that d is expressed with respect 
to the set of crystal axes we need to know what P becomes when referred to these 
axes. We shall call this object P'. As P is a 2 x 2 matrix in spin space we know 
that P must transform as a second order tensor in the j = representation of R3. 
Hence if the local axis is given in spherical polars by (1,0,4) then d is given by 
(cosO,sinOcos~,sinOsin~) and P'must be given by (Edmonds 1960), 

P' = nu,, + md.  P (A21 

where n = $ ( P  T +P L), m = $ ( P  t -P I), U,, is the 2 x 2 identity matrix, U = 
(uz,uv,uz),  and the up are Pauli matrices. The coefficients n and m are clearly 
related to the charge and magnetic moment respectively. The form of (A2) is identical 
to that of the 'potential matrix' of Kubler e2 a1 (1988). 

Equation (A2) gives P' for an atom on the arbitrary sublattice 0. To find P' 
for any other sublattice it is necessary to substitute the appropriate 8 in (A2). In 
a MSDW state the vector d is constrained by certain symmetries. Labelling the four 
basis points according to figure 1 it is not difficult to see that in the SSDW P' is the 
diagonal matrix 

n + mu3 

n - mus 

n - mu3 
P'= [ 

n + mu3 

Similarly, in the DSDW and TSDW respectively P' is given by the matrices 
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and 
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m 
n + -(-ul - uz + u3) J3 

Hence P' can always be written in terms of the matrices: 
1 0 0 0  1 0 0 0  

Po= (0  0 0 1 0  1 0 o )co  .=(o 0 0 - 1  O 0) 0 u 1  

+: ; qu2 0 - 1  0 - 1  0 0 o ) u 3 .  

0 0 0 1  0 0 0 - 1  

1 0 0 0  1 0 0 0  

0 0 0 -1  0 0 0 1  
Defining y,, i = 0 , 1 , 2 , 3  to be the previous 4 x 4 matrices this result can be written 
more concisely as 

pi = yiui i = 0 , 1 , 2 , 3  (A41 

P' = .Po + m c i . p  ('45) 

where the juxtaposition represents a direct product. The P' for a general MSDW can 
therefore be written as 

where p = (PE ,pz, p3) and 2 is the spin direction for sublattice 0. 
The p matrices given by (A3) represent the operators for the charge and spin 

wave amplitudes per unit cell, as can be seen by looking at their effects on the spinor 
wavefunction '4 for the unit cell (expressed with respect to the global axes) 

* = ( c l o t  $031 $15 $11 $ z t  $zJ $3T $331). 

For example 
3 

(*IPolW = M i  t 1'+ M i  1 I' 3 Q 
i=0 

where Q is the charge in the cell and 

(9IP&') = I$o 1' - l$o 1 1' - (161 t 1' - ld'i 1 1' + ld'z t 1' - lh 4. 1') 
+ l'b3 T 1' - l'b3 1 1' 
M ,  

where M, is the amplitudeof the spin wave in the global z direction. It can be seen 
that the elements of the p matrices give the relative phase of the spin polarization 
as a function of sublattice. The expectations of p,, pz and p, respectively are the 
spin wave amplitudes in the I, y and z directions. To obtain the spin polarization in 
a sphere (i.e. the value of the spin with respect to d,  the local spin axis) we simply 
calculate the magnitude of the vector :((&), (pa), (p3)). 
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Appendix B 

In order to perform self-consistent calculations on the MSDW systems described we 
need to reduce the 8 x 8 representation to an equivalent 4 x 4. It is therefore necessary 
to know the algebra satisfied by the structure constants in spin/sublattice space. In 
this section we shall derive a set of structure constants which is equivalent physically 
to the conventional constants but for which the algebra takes a more simple form. 

We take as our starting point the standard definition of the structure constants 
(Andersen et a/ 1985) 

s,,, k - - Ceib.R'spo,r+R, = eih.(ro-r) C e i k . ( R ' + v - v ~ ) s  O.R'+r-ra' (B1) 
R' R' 

In the second line we simply removed a phase factor and used the identity, 

Sro,r+R' = SO,R'+r-ro 

(Andersen 1975). 
The FCC structure in manganese or iron can be regarded as a simple cubic lattice 

with a four point hasis {cp, p = 0,1,2,3}. Defining the basis vectors according to 
figure 1 we have, 

a 
c - -(l,O,l) 

2 -  2 
a 

c3 = 170) 

where a is the lattice constant of the cubic lattice. It is these c vectors that replace 
the arbitrary r , ro  of (Bl) .  To determine the form of the structure constants we have 
to know cp - cp, for all possible p3p'. As the set of FCC lattice vectors is closed under 
addition we have, 

where a( has only a single non-zero element, unity, in any row or column. The simple 
cubic vector Rpp, takes account of the fact that on taking the difference we may end 
up in a different (cubic) unit cell to the one we start in, but the form of $p, is not 
relevant here. The a matrices are now easily determined owing to the small number 
of non-trivial combinations (six) of the a. 

1 0 0 0  0 1 0 0  

0 0 0 1  
0 0 0 1  0 0 1 0  

( y o =  (o  0 1 0 0  0 1 o) a l = ( l  O O 0) 

0 0 1 0  0 0 0 1  
0 0 0 1  0 0 1 0  

0 1 0 0  1 0 0 0  
0 0 o) .-( 0 1 0 0  ) 
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Equations (Bl) and (B3) give 
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sk - ik.(c,-c,r) Ceib(R'+c,,-c, 
PP' - e  )SO.R'tc,r-c, 

R' 

where we have put R = R' + Rpp,, and q is a dummy index. I t  is clear from (B4) 
that for any p,p' there is only one value of C for which is non-zero, and thus 
only one value of e'k'(o*)rr'E. which is not equal to one. Hence 

s k  PP' - - e  '*.(Cp-C,,) E( a< )PP , C e W R t c O S  0 , R t q  ' (Be) 
c R 

Equation (B6) shows that, up to a phase factor, the sublattice dependence of the 
structure constants can he written down entirely in terms of the a matrices. In fact, 
we can simply drop this phase factor altogether and define our structure constants by 

(s'),*,, = C(m,),,, C e l k . ( R + c J ) S  O.R+s, (87) 
J R 

which is the same as (2). To see why consider what has to be done to get from (B6) 
to (B7). It  is not difficult to show that 

S = DS'D-' (88) 
where D is given by, 

0 o \  

In the standard LMTO ASA code the full LMTO problem is not solved but rather 
the second order problem (Andersen et a[ 1985), with third order effects included 
afterwards as a perturbation. The second order problem can be written 

[C+ A'/'S(l - aS)-'A'/z]u = Eu (B10) 
where the potential parameters C, A and a are diagonalin sublattice space (but not, 
for a non-collinear structure, in spin space). As D is diagonal in sublattice space and 
is the identity in spin space it must commute with the potential parameters. Hence 
(B10) may be rewritten 

[C+ DA'l'S'(1 -aS')-'A'/2D-']u = Eu j [C+ A'/*S'(l -aS')-'A'/*]u' = Eu' 
(B11) 

where U' = P ' u .  So by solving the eigenvalue problem with constants defined 
by (B7) rather than (Bl) we obtain eigenvectors that  differ by a phase factor. The 
presence of this phase factor cannot affect the expectation of a physical observable. 

. 
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Appendix C 

In this appendix we idcntify the algebra which is satisfied by the p and auo matrices 
introduced in section 2 and we present a set of 4 x 4 matrices which satisfy the same 
algebra. Thinking first about the multiplication of the p matrices it is not difficult to 
show that: 

P A ,  =6f ,+ i~ fmnPn  k m , n E  {LL3). (C1) 

The exact multiplication rules obeyed by the a matrices are not important here: all 
that matters is that the set is closed under multiplication. The remaining elements of 
the algebra are the commutation relations, which can be shown by direct multiplication 
to be, 

= (r”),,a,P, (C2)  

where (y”),, is the entry p p  in the matrix 7” of (A3). The importance of the commu- 
tation relations are that they enable us to express any linear combination of products 
of powers of the as and ps as a linear combination of products a&. All one has to do 
is to use (C2) to reorder the terms in any product of powers to get all the as on the 
left, say, and all the ps on the right. The rules for the simplification of products in- 
volving as or ps only can then be invoked. Hence a Hamiltonian expressed as a power 
series in these matrices can always be reduced to a linear combination of products. 

Knowing that the algebra is defined by (Cl) and (C2) we first search for a set of 
4 x 4 matrices p‘ which can replace the /3s. It can be verified that the following set is 
suitable 

/ 1  0 0 o \  / o  1 0 o \  

\ o  0 0 1 /  \ o  0-1 o /  
/ 0 - i  0 O \  / 1  0 0 o \  

These matrices are not uniquely determined by (Cl) and (C2) and the set given here 
was obtained by requiring & to be diagonal. In the simpler case of the SSDW, with 
the spin axis in the z direction, the real space symmetry of the spins is then evident 
(the elements of 0; correspond to spin up moments on sublattices 0 and 3, and down 
on 1 and 2, see figure 1). The matrices muo are already represented by the identity 
in spin space, and an algebraically equivalent 4 x 4 set may be obtained by simply 
omitting the direct product with uo. 

Once the reduced Hamiltonian has been diagonalized there is one further task to 
perform, which is to extract the spin information from the eigenfnnctions. To do this 
it must be recognized that in the new representation the matrices p’ are the operators 
for the charge and spin wave amplitudes per the unit cell (see appendix A). This 
is so because the p‘s are algebraically equivalent to the old matrices p. So to get 
the charge or spin component on atom 0 we find the expectation of the appropriate 
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f3' in the solution state @ for the cell, and divide by two rather than four (as the 
representation is 4 x 4 rather than 8 x 8). The spin polarization on any atom is given 

D J Crockford el  a1 

by the magnitude of i((W{l*), (WJW), (WfilW). 
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